↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
convert3: (b,b,f)
times3: (b,b,f)
plus3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
convert_3_in_gga3([]_0, B, 0_0) -> convert_3_out_gga3([]_0, B, 0_0)
convert_3_in_gga3(._22(0_0, XS), B, X) -> if_convert_3_in_1_gga4(XS, B, X, convert_3_in_gga3(XS, B, Y))
convert_3_in_gga3(._22(s_11(Y), XS), B, s_11(X)) -> if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_in_gga3(._22(Y, XS), B, X))
if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_out_gga3(._22(Y, XS), B, X)) -> convert_3_out_gga3(._22(s_11(Y), XS), B, s_11(X))
if_convert_3_in_1_gga4(XS, B, X, convert_3_out_gga3(XS, B, Y)) -> if_convert_3_in_2_gga5(XS, B, X, Y, times_3_in_gga3(Y, B, X))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_convert_3_in_2_gga5(XS, B, X, Y, times_3_out_gga3(Y, B, X)) -> convert_3_out_gga3(._22(0_0, XS), B, X)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
convert_3_in_gga3([]_0, B, 0_0) -> convert_3_out_gga3([]_0, B, 0_0)
convert_3_in_gga3(._22(0_0, XS), B, X) -> if_convert_3_in_1_gga4(XS, B, X, convert_3_in_gga3(XS, B, Y))
convert_3_in_gga3(._22(s_11(Y), XS), B, s_11(X)) -> if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_in_gga3(._22(Y, XS), B, X))
if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_out_gga3(._22(Y, XS), B, X)) -> convert_3_out_gga3(._22(s_11(Y), XS), B, s_11(X))
if_convert_3_in_1_gga4(XS, B, X, convert_3_out_gga3(XS, B, Y)) -> if_convert_3_in_2_gga5(XS, B, X, Y, times_3_in_gga3(Y, B, X))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_convert_3_in_2_gga5(XS, B, X, Y, times_3_out_gga3(Y, B, X)) -> convert_3_out_gga3(._22(0_0, XS), B, X)
CONVERT_3_IN_GGA3(._22(0_0, XS), B, X) -> IF_CONVERT_3_IN_1_GGA4(XS, B, X, convert_3_in_gga3(XS, B, Y))
CONVERT_3_IN_GGA3(._22(0_0, XS), B, X) -> CONVERT_3_IN_GGA3(XS, B, Y)
CONVERT_3_IN_GGA3(._22(s_11(Y), XS), B, s_11(X)) -> IF_CONVERT_3_IN_3_GGA5(Y, XS, B, X, convert_3_in_gga3(._22(Y, XS), B, X))
CONVERT_3_IN_GGA3(._22(s_11(Y), XS), B, s_11(X)) -> CONVERT_3_IN_GGA3(._22(Y, XS), B, X)
IF_CONVERT_3_IN_1_GGA4(XS, B, X, convert_3_out_gga3(XS, B, Y)) -> IF_CONVERT_3_IN_2_GGA5(XS, B, X, Y, times_3_in_gga3(Y, B, X))
IF_CONVERT_3_IN_1_GGA4(XS, B, X, convert_3_out_gga3(XS, B, Y)) -> TIMES_3_IN_GGA3(Y, B, X)
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> IF_TIMES_3_IN_1_GGA4(X, Y, Z, times_3_in_gga3(X, Y, U))
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
IF_TIMES_3_IN_1_GGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> IF_TIMES_3_IN_2_GGA5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
IF_TIMES_3_IN_1_GGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> PLUS_3_IN_GGA3(Y, U, Z)
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_PLUS_3_IN_1_GGA4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> PLUS_3_IN_GGA3(X, Y, Z)
convert_3_in_gga3([]_0, B, 0_0) -> convert_3_out_gga3([]_0, B, 0_0)
convert_3_in_gga3(._22(0_0, XS), B, X) -> if_convert_3_in_1_gga4(XS, B, X, convert_3_in_gga3(XS, B, Y))
convert_3_in_gga3(._22(s_11(Y), XS), B, s_11(X)) -> if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_in_gga3(._22(Y, XS), B, X))
if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_out_gga3(._22(Y, XS), B, X)) -> convert_3_out_gga3(._22(s_11(Y), XS), B, s_11(X))
if_convert_3_in_1_gga4(XS, B, X, convert_3_out_gga3(XS, B, Y)) -> if_convert_3_in_2_gga5(XS, B, X, Y, times_3_in_gga3(Y, B, X))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_convert_3_in_2_gga5(XS, B, X, Y, times_3_out_gga3(Y, B, X)) -> convert_3_out_gga3(._22(0_0, XS), B, X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
CONVERT_3_IN_GGA3(._22(0_0, XS), B, X) -> IF_CONVERT_3_IN_1_GGA4(XS, B, X, convert_3_in_gga3(XS, B, Y))
CONVERT_3_IN_GGA3(._22(0_0, XS), B, X) -> CONVERT_3_IN_GGA3(XS, B, Y)
CONVERT_3_IN_GGA3(._22(s_11(Y), XS), B, s_11(X)) -> IF_CONVERT_3_IN_3_GGA5(Y, XS, B, X, convert_3_in_gga3(._22(Y, XS), B, X))
CONVERT_3_IN_GGA3(._22(s_11(Y), XS), B, s_11(X)) -> CONVERT_3_IN_GGA3(._22(Y, XS), B, X)
IF_CONVERT_3_IN_1_GGA4(XS, B, X, convert_3_out_gga3(XS, B, Y)) -> IF_CONVERT_3_IN_2_GGA5(XS, B, X, Y, times_3_in_gga3(Y, B, X))
IF_CONVERT_3_IN_1_GGA4(XS, B, X, convert_3_out_gga3(XS, B, Y)) -> TIMES_3_IN_GGA3(Y, B, X)
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> IF_TIMES_3_IN_1_GGA4(X, Y, Z, times_3_in_gga3(X, Y, U))
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
IF_TIMES_3_IN_1_GGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> IF_TIMES_3_IN_2_GGA5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
IF_TIMES_3_IN_1_GGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> PLUS_3_IN_GGA3(Y, U, Z)
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_PLUS_3_IN_1_GGA4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> PLUS_3_IN_GGA3(X, Y, Z)
convert_3_in_gga3([]_0, B, 0_0) -> convert_3_out_gga3([]_0, B, 0_0)
convert_3_in_gga3(._22(0_0, XS), B, X) -> if_convert_3_in_1_gga4(XS, B, X, convert_3_in_gga3(XS, B, Y))
convert_3_in_gga3(._22(s_11(Y), XS), B, s_11(X)) -> if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_in_gga3(._22(Y, XS), B, X))
if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_out_gga3(._22(Y, XS), B, X)) -> convert_3_out_gga3(._22(s_11(Y), XS), B, s_11(X))
if_convert_3_in_1_gga4(XS, B, X, convert_3_out_gga3(XS, B, Y)) -> if_convert_3_in_2_gga5(XS, B, X, Y, times_3_in_gga3(Y, B, X))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_convert_3_in_2_gga5(XS, B, X, Y, times_3_out_gga3(Y, B, X)) -> convert_3_out_gga3(._22(0_0, XS), B, X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> PLUS_3_IN_GGA3(X, Y, Z)
convert_3_in_gga3([]_0, B, 0_0) -> convert_3_out_gga3([]_0, B, 0_0)
convert_3_in_gga3(._22(0_0, XS), B, X) -> if_convert_3_in_1_gga4(XS, B, X, convert_3_in_gga3(XS, B, Y))
convert_3_in_gga3(._22(s_11(Y), XS), B, s_11(X)) -> if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_in_gga3(._22(Y, XS), B, X))
if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_out_gga3(._22(Y, XS), B, X)) -> convert_3_out_gga3(._22(s_11(Y), XS), B, s_11(X))
if_convert_3_in_1_gga4(XS, B, X, convert_3_out_gga3(XS, B, Y)) -> if_convert_3_in_2_gga5(XS, B, X, Y, times_3_in_gga3(Y, B, X))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_convert_3_in_2_gga5(XS, B, X, Y, times_3_out_gga3(Y, B, X)) -> convert_3_out_gga3(._22(0_0, XS), B, X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> PLUS_3_IN_GGA3(X, Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
PLUS_3_IN_GGA2(s_11(X), Y) -> PLUS_3_IN_GGA2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
convert_3_in_gga3([]_0, B, 0_0) -> convert_3_out_gga3([]_0, B, 0_0)
convert_3_in_gga3(._22(0_0, XS), B, X) -> if_convert_3_in_1_gga4(XS, B, X, convert_3_in_gga3(XS, B, Y))
convert_3_in_gga3(._22(s_11(Y), XS), B, s_11(X)) -> if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_in_gga3(._22(Y, XS), B, X))
if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_out_gga3(._22(Y, XS), B, X)) -> convert_3_out_gga3(._22(s_11(Y), XS), B, s_11(X))
if_convert_3_in_1_gga4(XS, B, X, convert_3_out_gga3(XS, B, Y)) -> if_convert_3_in_2_gga5(XS, B, X, Y, times_3_in_gga3(Y, B, X))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_convert_3_in_2_gga5(XS, B, X, Y, times_3_out_gga3(Y, B, X)) -> convert_3_out_gga3(._22(0_0, XS), B, X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
TIMES_3_IN_GGA2(s_11(X), Y) -> TIMES_3_IN_GGA2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
CONVERT_3_IN_GGA3(._22(0_0, XS), B, X) -> CONVERT_3_IN_GGA3(XS, B, Y)
CONVERT_3_IN_GGA3(._22(s_11(Y), XS), B, s_11(X)) -> CONVERT_3_IN_GGA3(._22(Y, XS), B, X)
convert_3_in_gga3([]_0, B, 0_0) -> convert_3_out_gga3([]_0, B, 0_0)
convert_3_in_gga3(._22(0_0, XS), B, X) -> if_convert_3_in_1_gga4(XS, B, X, convert_3_in_gga3(XS, B, Y))
convert_3_in_gga3(._22(s_11(Y), XS), B, s_11(X)) -> if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_in_gga3(._22(Y, XS), B, X))
if_convert_3_in_3_gga5(Y, XS, B, X, convert_3_out_gga3(._22(Y, XS), B, X)) -> convert_3_out_gga3(._22(s_11(Y), XS), B, s_11(X))
if_convert_3_in_1_gga4(XS, B, X, convert_3_out_gga3(XS, B, Y)) -> if_convert_3_in_2_gga5(XS, B, X, Y, times_3_in_gga3(Y, B, X))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_convert_3_in_2_gga5(XS, B, X, Y, times_3_out_gga3(Y, B, X)) -> convert_3_out_gga3(._22(0_0, XS), B, X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
CONVERT_3_IN_GGA3(._22(0_0, XS), B, X) -> CONVERT_3_IN_GGA3(XS, B, Y)
CONVERT_3_IN_GGA3(._22(s_11(Y), XS), B, s_11(X)) -> CONVERT_3_IN_GGA3(._22(Y, XS), B, X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
CONVERT_3_IN_GGA2(._22(0_0, XS), B) -> CONVERT_3_IN_GGA2(XS, B)
CONVERT_3_IN_GGA2(._22(s_11(Y), XS), B) -> CONVERT_3_IN_GGA2(._22(Y, XS), B)
Order:Homeomorphic Embedding Order
AFS:
0_0 = 0_0
s_11(x1) = s_11(x1)
._22(x1, x2) = ._22(x1, x2)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules.
none